

MATH 320 Unit 3 Exercises

Divisibility, plus Unit 1 Revisited

\mathbb{Z}_p Theorem: Let $p \in \mathbb{Z}$ with $p \geq 2$. The following are equivalent: (i) p is prime; (ii) \mathbb{Z}_p is an integral domain; (iii) \mathbb{Z}_p is a field.

$\mathbb{F}[x]$ Division Algorithm Theorem: Let \mathbb{F} be a field, and let $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$. Then there exist unique $q(x), r(x) \in \mathbb{F}[x]$ with $f(x) = g(x)q(x) + r(x)$ and either $r(x) = 0_{\mathbb{F}}$ or $\deg(r(x)) < \deg(g(x))$. We write $(f(x), g(x)) \rightarrow DA \rightarrow (q(x), r(x))$ or $(f, g) \rightarrow DA \rightarrow (q, r)$.

Let \mathbb{F} be a field, and let $f(x), g(x) \in \mathbb{F}[x]$, not both zero. We define their *greatest common divisor* $\gcd(f(x), g(x))$ or $\gcd(f, g)$ as their monic common divisor of greatest degree. (It must exist since $1_{\mathbb{F}}$, of degree 0, is always a monic common divisor. It is unique due to reasons from Unit 4.)

Let \mathbb{F} be a field, and let $a_1(x), a_2(x) \in \mathbb{F}[x]$ with $a_2(x) \neq 0$. We define the $\mathbb{F}[x]$ *Euclidean algorithm* as $(a_1, a_2) \rightarrow DA \rightarrow (q_1, a_3)$, then $(a_2, a_3) \rightarrow DA \rightarrow (q_2, a_4)$, and so on until $(a_k, a_{k+1}) \rightarrow DA \rightarrow (q_k, 0)$.

Bézout's $\mathbb{F}[x]$ Lemma: Let \mathbb{F} be a field, and let $f(x), g(x) \in \mathbb{F}[x]$, not both zero. Then there exist $u(x), v(x) \in \mathbb{F}[x]$ with $f(x)u(x) + g(x)v(x) = \gcd(f(x), g(x))$. Conversely, for any $a(x), b(x) \in \mathbb{F}[x]$, we must have $\gcd(f(x), g(x)) | (f(x)a(x) + g(x)b(x))$.

$\mathbb{F}[x]$ cancellative property: Let $f, g, h \in \mathbb{F}[x]$, where \mathbb{F} is a field and $f \neq 0$. If $fg = fh$ then $g = h$.

Let R be a commutative ring with identity, and let $a, b \in R$. We say that a is an *associate* of b if there is some unit $u \in R$ with $a = ub$. If $a \in R$ is not a unit and not 0_R , we call a *irreducible* if all of its divisors are units and associates (otherwise we call a *reducible*). We call nonzero nonunit $a \in R$ *prime* if it satisfies

$$\forall b, c \in R, \text{ if } a|bc \text{ then } (a|b \text{ or } a|c).$$

For Oct. 9:

1. Use the Euclidean algorithm (for integers) to find $[25]^{-1}$ in \mathbb{Z}_{41} .
2. Let $n \in \mathbb{Z}$ with $n \geq 2$. Suppose that n is not prime. Find some (nonzero) $[a] \in \mathbb{Z}_n$ that is a zero divisor (and, therefore, not a unit).
3. Let $n \in \mathbb{Z}$ with $n \geq 2$, and let $[a] \in \mathbb{Z}_n$. Prove that $[a]$ is a unit if and only if $\gcd(a, n) = 1$.
4. Prove the \mathbb{Z}_p theorem.

For Oct. 14:

5. Let \mathbb{F} be a field, and let $f(x), g(x) \in \mathbb{F}[x]$ with $f(x), g(x) \neq 0$. Suppose that $(f, g) \rightarrow DA \rightarrow (q, r)$. Prove that $\gcd(f, g) = \gcd(g, r)$.
6. Prove the $\mathbb{F}[x]$ Euclidean algorithm must terminate at some $(a_k, a_{k+1}) \rightarrow DA \rightarrow (q_k, 0)$. Prove that when it does that there is some $u \in \mathbb{F}$ with $ua_{k+1} = \gcd(a_1, a_2)$. Use this to find $\gcd(x^3 - x^2 - 4x - 6, x^4 - 2x^3 - 5x^2 + 8x - 6)$ in $\mathbb{Q}[x]$ by hand.
7. If we remember the steps of the $\mathbb{F}[x]$ Euclidean algorithm, we can reverse them, back-substituting repeatedly, to find $u(x), v(x)$ to satisfy Bézout's $\mathbb{F}[x]$ Lemma. Apply this to $(a, b) = (x^3 - x^2 - 4x - 6, x^4 - 2x^3 - 5x^2 + 8x - 6)$, in $\mathbb{Q}[x]$.
8. Prove the uniqueness part of the $\mathbb{F}[x]$ Division Algorithm Theorem. That is, suppose $(f, g) \rightarrow DA \rightarrow (q, r)$ and also $(f, g) \rightarrow DA \rightarrow (q', r')$. Prove $q(x) = q'(x)$ and $r(x) = r'(x)$.
HINT: Write $f = qg + r$ and $f = q'g + r'$. Subtract and rearrange to get $(r - r') = g(q' - q)$. Now think about cases and the degree sum theorem.

For Oct. 16:

9. Let R be a commutative ring with identity, and $a, b, c \in R$. Suppose that a is an associate of b . Prove that b is an associate of a ; also, prove that if $a|c$ then $b|c$.
10. Let R be a commutative ring with identity, let $a, b \in R$ with a an associate of b . Prove that if a is irreducible then b is irreducible; also, prove that if a is prime then b is prime.
11. Let $R = \mathbb{F}[x]$, and $a, b \in R$. Prove that the following are equivalent: (i) a, b are associates; (ii) $a|b$ and $b|a$.
12. Let \mathbb{F} be a field. Prove that in $\mathbb{F}[x]$, every irreducible is prime.
HINT: If $f(x)$ is irreducible and $f(x)|u(x)v(x)$, consider $g(x) = \gcd(f(x), u(x))$. Two cases, one of which is like the proof of Unit 1 Exercise 17 (Bezout).

Extra:

13. Let $n \in \mathbb{Z}$ with $n \geq 2$, and let $[a], [b] \in \mathbb{Z}_n$, with $[a] \neq [0]$. Prove that if $[a]x = [b]$ has no solutions, then $[a]$ is a zero divisor.
14. Let R be a commutative ring with identity. Let $a \in R$ satisfy $a^3 = 0_R$. Prove that $1_R + ax$ is a unit in $R[x]$.
15. Demonstrate, with an example, that the Division Algorithm Theorem need not hold for $\mathbb{Z}[x]$.
16. Let \mathbb{F} be a field, and let $a, b \in \mathbb{F}$ with $a \neq b$. Prove that $\gcd(x + a, x + b) = 1_{\mathbb{F}}$, in $\mathbb{F}[x]$.
17. Let \mathbb{F} be a field, and let $f(x) \in \mathbb{F}[x]$ with $f(x) \neq 0_{\mathbb{F}}$. Suppose that $f(x)|g(x)$ for every nonconstant $g(x) \in \mathbb{F}[x]$. Prove that $\deg(f(x)) = 0$.
18. Prove the existence part of the $\mathbb{F}[x]$ Division Algorithm Theorem. That is, prove that for any $f(x), g(x) \in \mathbb{F}[x]$ with $g(x) \neq 0$, there must exist some $q(x), r(x) \in \mathbb{F}[x]$ with $(f, g) \rightarrow DA \rightarrow (q, r)$.